Abstract

Performing forced vibration tests on full-scale structures is the most reliable way of determining the relevant modal parameters in structural dynamics, such as modal frequencies, mode shapes, modal damping, and modal masses. This study describes the modal identification of a double-level curved cable-stayed bridge with separate deck systems for pedestrians and vehicles via forced vibration tests. The steady-state structural responses to sinusoidal excitations produced by an electrodynamic shaker are recorded under varying excitation frequencies, and the frequency response functions are established. The measured frequency response functions are curve fitted to estimate the modal parameters. The numerical simulation of frequency response function–based modal parameter identification of an elastically multi-supported continuous beam structure is carried out, and the emphasis has been placed on the evaluation of the effect of an additional shaker mass, excitation frequency step and range, multi-mode vibration, and noise on identification results. Finally, the modal parameters for the first lateral mode of a double-level curved cable-stayed bridge are identified by forced vibration experiments, and the results are compared with those from ambient vibration tests and free vibration tests. The effect of the unmeasured wind excitation on identification is discussed. It is shown that the effect of ambient vibration is minor for wind velocity of 3–5 m/s. The damping ratios identified by forced and free vibration tests are comparable, while those from ambient vibration are subject to large variations. The modal mass obtained from forced vibration tests is in good agreement with finite element prediction, which provides design basis for mass-type dampers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call