Abstract

The novelty of this study is to present a theoretical approach to investigate the dynamic behaviors of the laminated panels under arbitrary elastic boundary conditions. The motion equations of panels considering the first order piston theory are derived using Hamilton principle. A solution of computing the vibration characteristics of a panel with arbitrary elastic boundaries is proposed based on the Rayleigh–Ritz method, in which the admissible functions are constructed by a set of characteristic orthogonal polynomials employing the Gram–Schmidt process; the support boundary is modeled by introducing the technology of artificial springs. The effects of spring stiffness and different boundaries on the dynamic characteristics and thermal aeroelastic behaviors are presented in detail. Numerical results show that the small ply angle and large spring stiffness are helpful to improve the aerodynamic stability. Multiple new phenomena have been observed, e.g. the phenomena of mode jumping and the alterations of coupled mode orders. Moreover, the thermal loads and aerodynamic loads play an opposite effect on the stability of composite panels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call