Abstract

We investigate the MSSM with very large tan(beta) > 50, where the fermion masses are strongly affected by loop-induced couplings to the "wrong" Higgs, imposing perturbative Yukawa couplings and constraints from flavour physics. Performing a low-energy scan of the MSSM with flavour-blind soft terms, we find that the branching ratio of B->tau nu and the anomalous magnetic moment of the muon are the strongest constraints at very large tan(beta) and identify the viable regions in parameter space. Furthermore we determine the scale at which the perturbativity of the Yukawa sector breaks down, depending on the low-energy MSSM parameters. Next, we analyse the very large tan(beta) regime of General Gauge Mediation (GGM) with a low mediation scale. We investigate the requirements on the parameter space and discuss the implied flavour phenomenology. We point out that the possibility of a vanishing Bmu term at a mediation scale M = 100 TeV is challenged by the experimental data on B->tau nu and the anomalous magnetic moment of the muon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call