Abstract

In this paper we explore the constraints from B-physics observables in SUSY models of Minimal Flavor Violation, in the large tan beta regime, for both low and high scale supersymmetry breaking scenarios. We find that the rare B-decays b -> s gamma and B_s -> mu+ mu- can be quite sensitive to the scale M at which supersymmetry breaking is communicated to the visible sector. In the case of high scale supersymmetry breaking, we show that the additional gluino contribution to the b -> s gamma and B_s -> mu+ mu- rare decay rates can be significant for large tan beta, mu and M_3. The constraints on B_u -> tau nu are relatively insensitive to the precise scale of M. We also consider the additional constraints from the present direct Higgs searches at the Tevatron in the inclusive H/A -> tau tau channel, and the latest CDMS direct dark matter detection experiments. We find that altogether the constraints from B-physics, Higgs physics and direct dark matter searches can be extremely powerful in probing regions of SUSY parameter space for low M_A and large tan beta, leading to a preference for models with a lightest CP-even Higgs mass close to the current experimental limit. We find interesting regions of parameter space that satisfy all constraints and can be probed by Higgs searches at the Tevatron and the LHC and by direct dark matter searches in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call