Abstract

High Performance Fortran (HPF) offers an attractive high‐level language interface for programming scalable parallel architectures providing the user with directives for the specification of data distribution and delegating to the compiler the task of generating an explicitly parallel program. Available HPF compilers can handle regular codes quite efficiently, but dramatic performance losses may be encountered for applications which are based on highly irregular, dynamically changing data structures and access patterns. In this paper we introduce the Vienna Fortran Compiler (VFC), a new source‐to‐source parallelization system for HPF+, an optimized version of HPF, which addresses the requirements of irregular applications. In addition to extended data distribution and work distribution mechanisms, HPF+ provides the user with language features for specifying certain information that decisively influence a program’s performance. This comprises data locality assertions, non‐local access specifications and the possibility of reusing runtime‐generated communication schedules of irregular loops. Performance measurements of kernels from advanced applications demonstrate that with a high‐level data parallel language such as HPF+ a performance close to hand‐written message‐passing programs can be achieved even for highly irregular codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.