Abstract

In electrically conductive conditions common in environmental characterization studies the minimum depth of investigation for traditional electromagnetic (EM) sounding techniques is roughly 5 meters, while ground penetrating radar (GPR) systems often investigate no more than the top meter or so when clay minerals are present in the soil. Bridging this gap is essential to the characterization of buried waste, contaminant plumes, and other environmental and hydrogeological targets located in the shallow subsurface. The Very Early Time Electromagnetic (VETEM) system is designed to ascertain the conductivity and dielectric properties of the shallow subsurface in conductive terrain. Hence, the one-dimensional (1-D) and three-dimensional (3-D) numerical modeling algorithms, developed in the first year of the project, contain the full solution to the EM problem including both displacement and conduction currents. The VETEM system fills a gap between EM and GPR, but all three methods are necessary to successfully image the shallow subsurface. To achieve the goal of fully 3-D subsurface imaging, the VETEM project is hosting the Electromagnetic Integrated Demonstration (EMID) at the Idaho National Engineering Laboratory`s Cold Test Pit (INEL`s CTP). Over a dozen EM systems will acquire data over the same survey area for interpretation in conjunction with the VETEM team.more » The prototype time-domain instrument employs a magnetic dipole transmitter and receiver and operates from 10 nano-second to a micro-second. The USGS high frequency sounder (HFS), which served as the VETEM proof-of-concept, uses the same antenna geometry as the time-domain instrument and acquires data from 30 kHz to 30 MHz. The first VETEM survey was recently conducted at the INEL`s CTP as a part of the EMID. The electromagnetic migration technique is being investigated for interpretation of the VETEM data.« less

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.