Abstract

A wet chemical synthetic approach involving precipitation–peptization mechanisms was successfully adopted for the development of LaPO4–ZrO2 nanocomposites with the ZrO2 content varying in the 5–20 wt% range. Stoichiometric lanthanum phosphate, formed as nanofibrils during the precipitation reaction with orthophosphoric acid, was subsequently transformed into nanorods of ∼10 nm width and 98% TD for the LaPO4–10 wt% ZrO2 composition upon sintering at 1600 °C. The addition of ZrO2 to LaPO4 impeded densification and grain growth inhibition of up to 50% was obtained for LaPO4–20 wt% ZrO2 nanocomposites. Furthermore, the nanocomposites indicated very low thermal conductivity values (1 W m−1 K−1) compared to single phase LaPO4. The non-reactivity of LaPO4 and ZrO2 at high temperatures and the low thermal conductivity values of LaPO4–ZrO2 render them effective for high temperature thermal insulation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.