Abstract
Silica aerogel has attracted great interest in thermal insulation applications due to its ultralow thermal conductivity. However, silica aerogel is transparent to the infrared radiation in the range of 3-8 µm, making them be not suitable for high temperature thermal insulation applications. Here, we developed an optimization method considering both thermal radiation and heat conduction to design the geometric structures of aerogel composites with minimized thermal conductivity. The results show that when the ambient temperature is lower than ~ 600 K, the additives with low thermal conductivity are preferred. When the ambient temperature is higher than ~ 600 K, the additives with high extinction coefficients are needed. The additives with a broad size distribution could enable the aerogel composites to have an optimal thermal insulation performance in the environment with a changing temperature. The work provides a guideline for the geometric design of aerogel composites for high temperature thermal insulation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.