Abstract

Understanding the interrelationships between molecular structure and organic thin film transistor performance is key to the realization of novel organic semiconductors achieving superior device characteristics. Herein we report the synthesis, characterization, and charge-transporting properties in organic field-effect transistors (OFETs) of dithieno silole-based oligomers and copolymers having silacycloalkyl substituents. Silacyclization of the alkyl substituents on the silole silicon atom reduces steric encumbrance, contracts solid state intermolecular π−π contacts, and enhances the charge-transport capacity of the oligomers. Oligomer 3,3′-dihexylsilylene-2,2′:5,2′′:5′,2′′′:5′′,2′′′′:5′′′,2′′′′′-sexithiophene (SM5) with two Si-n-hexyl substituents is not FET-active, while the mobilities of 3,3′-cyclopentanylsilylene-2,2′:5,2′′:5′,2′′′:5′′,2′′′′:5′′′,2′′′′′′-sexithiophene (SM4) and 3,3′-cyclobutysilylene-2,2′:5,2′′:5′,2′′′:5′′,2′′′′:5′′′,2′′′′′-sexithiophene (SM3) FETs are 2.6 × 10−4 and 3.4 × 10−4 cm2/(V...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.