Abstract

Due to its large area Large Scale Topographic Mapping (LSTM) for Indonesia requires acceleration strategies that must be innovative enough to take into account the production efficiency. Satellite-based technologies are still a preferable choice especially in conjunction with the security clearance and weather. Standards for the Very High-Resolution Satellite Imagery (VHRS) utilization are essential, especially in a situation where there are so many available sensors and processing methods implemented. Hence, the selection of a proper geometric correction method is fundamental in order to utilize the VHRS imagery as one source of geospatial data especially for LSTM production and updating purposes. For CSRT geometric correction, an orthorectification process is required, where this process requires input data from the Ground Control Point (TKT) and the Digital Elevation Model (DEM). Therefore, the Least Square Adjustment (LSA) method is implemented to be able to include 8-9 GCPs per-scene (orbital and sensor parameters) and the DEM with a maximum resolution 4 times of the VHRS imagery’s Ground Sampling Distance (GSD) in the process of producing VHRS orthoimages. In addition, the role of orbital and sensor parameters is also essential for the geometric correction because its relation to the Direct Georeferencing (DG) of each pixel by Rigorous Sensor Model (RSM) approach. However, in the situation where the reliable orbital and sensor parameters are not available, the Rational Function Model (RFM) can be used as an alternative solution for the geometric correction of VHRS imagery. This paper discusses the VHRS utilization with a comprehensive approach that can be implemented in a local coordinate system i.e. the Indonesian Geospatial Reference System for the production of the reliable VHRS imageries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.