Abstract

A very-high radix algorithm and implementation for CORDIC rotation in circular and hyperbolic coordinates is presented. The selection function consists of rounding the residual. It is shown that this assures convergence from the second iteration on. For the first iteration, the selection is done by table, using a lower radix than for the remaining iterations. The compensation of the variable scale factor is done by computing the logarithm of the scale factor and performing the compensation by an exponential. Estimations of the delay for 32-bit and 64-bit precision show a substantial speed up when compared to low radix implementations. The proposed algorithm is also compared with previously proposed very-high radix ones, and significant advantages are identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.