Abstract
The design life of welded structures and components extends into the very high cycle fatigue (VHCF) regime across various applications. However, the availability of data on the fatigue behaviour of welded joints in the VHCF regime is limited, particularly when compared to the low and high cycle fatigue regimes. The development of ultrasonic fatigue testing equipment has accelerated fatigue testing and allowed for the VHCF properties of welds to be investigated in a feasible timeframe. In the present review, the emerging research concerning the VHCF behaviour of welds of various steels and non-ferrous alloys are individually explored. Overall, it is observed that welded joints have significantly lower fatigue strength than the base metal in the VHCF regime and that welding defects have a considerable influence on fatigue strength. Through the discussion of the relevant literature, important findings concerning the effects of specimen geometry and fatigue improvement methods are underlined. Furthermore, the guidance provided within design standards is compared, and some examples of VHCF failures of in-service components are highlighted. Finally, perspectives on future directions of investigation are put forward with the aim of encouraging further research in the field of VHCF of welds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.