Abstract
Efficient modeling of flow physics is a prerequisite for a reliable computation of free-surface environmental flows. Non-hydrostatic flows are often present in shallow water environments, making the task challenging. In this work, we use the method of weighted residuals for modeling non-hydrostatic free surface flows in a depth-averaged framework. In particular, we focus on the Vertically Averaged and Moment (VAM) equations model. First, a new derivation of the model is presented using expansions of the field variables in sigma-coordinates with Legendre polynomials basis. Second, an efficient two-step numerical scheme is proposed: the first step corresponds to solving the hyperbolic part with a second-order path-conservative PVM scheme. Then, in a second step, non-hydrostatic terms are corrected by solving a linear Poisson-like system using an iterative method, thereby resulting in an accurate and efficient algorithm. The computational effort is similar to the one required for the well-known Serre-Green-Naghdi (SGN) system, while the results are largely improved. Finally, the physical aspects of the model are compared to the SGN system and a multilayer model, demonstrating that VAM is comparable in physical accuracy to a two-layer model.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have