Abstract
Abstract Vertical-axis rotation of rigid crustal blocks occurs in a variety of obliquely convergent and divergent plate boundaries. We quantify the rotation of these blocks using models of transpressional and transtensional kinematics, and corroborate our results using physical models where rigid blocks rotate in response to flow of a ductile substrate. Consequently, one can explicitly demonstrate a relationship between the amount of rotation of a rigid crustal block and strain recorded in ductile substrate. This strain should be reflected directly by the orientation of rock fabrics, such as those measured by shear-wave splitting in the in situ upper mantle.s We apply this approach to southern California and New Zealand by using previously documented palaeomagnetic rotations and plate motion vectors, and calculate the strain recorded by the material below rigid blocks. These strain calculations are compared to shear-wave splitting data, which record upper mantle fabric, from the same region. Our model results suggest that similar deformation is recorded by the upper crust and lithospheric mantle. A bottom-driven flow, in which mantle deformation drives upper crustal rotations, is most consistent with these observations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have