Abstract

Selective tidal-streaming is a model frequently used to explain how planktonic larvae invade estuaries. The ability of larvae to move vertically in the water column to selectively ride favourable currents and maintain ground gained is critical to this process. The mud crab ( Scylla serrata) is a widely distributed, commercially and recreationally important portunid crab but little is known about its estuarine recruitment mechanisms or the vertical migration behaviour of its megalopae. In studies of the blue crab ( Callinectes sapidus), important factors identified in the recruitment mechanism include altered vertical swimming behaviours in estuarine and offshore water and an endogenous circadian rhythm. Using laboratory experiments we examined the vertical displacement response of mud crab megalopae to illumination in estuarine and offshore water during the day and the night. Mud crab megalopae released into 1 m high towers swam higher when illuminated than when in darkness. This behaviour was repeated during the day and the night and in offshore and estuarine water. Given the apparent indifference to water type and the fact that mud crab megalopae are rarely caught in estuaries, we propose the model that these crabs do not invade estuaries as megalopae, but settle and metamorphose into small crabs on the coastal shelf before moving along the sea bed into estuarine habitats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call