Abstract
Vertical-component of ground motions (GM) plays a significant role in seismic hazard analysis, especially for long-span structures and high-rising buildings. The former is usually predicted by empirical ground motion models (GMMs) that are developed on the basis of a preset function form and thus intensely depend on researchers' choices and prior knowledge. To overcome this issue, a deep learning-based GMM to predict the vertical component of GMs' IMs is developed in this study. 20,651 GM recordings are selected and divided into training, validation, and testing dataset based on the Next Generation Attenuation-West2 Project (NGA-West2). Comparative assessments with existing models are introduced on predicting performance indicators, IMs’ distribution with respect to seismic parameters, residuals, and variabilities. It can be concluded that the proposed model possesses better predictive power than the compared models. Meanwhile, sound physical features (e.g., magnitude scaling effects and near-fault saturation) can be observed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have