Abstract
Vertical ground heat exchangers (VGHE) are the most extended elements in geothermal utilization systems. For design and optimization purposes, the precise determination of several thermal properties is of utmost importance. While soil properties can be accurately obtained from simple mathematical models and short identification procedures, the grout characterization and additional uncertainties are usually identified from time-consuming and complex models. In order to optimize and simplify this process, without loss of accuracy, the present work proposes the use of design of experiments (DoEs) for that estimation. Thus, a multi-physic 3D model that replicates the geothermal heat exchanger (GHE) environment has been employed to develop a fractional factorial design of experiments, obtaining a set of output errors by comparison with experimental data. A response surface methodology (RSM) has been used to conduct second-order linear regression fittings, that approximate the error functions to obtain the parameter values through the minima of such surfaces. Overall mean errors lower than 0.01 ° C are obtained, which provide excellent agreement in modelling the experimental test. Finally, an additional full-scale experiment has been simulated in order to validate the numerical DoE approach. Consequently, the proposed methodology has been demonstrated to accurately predict the grout thermal parameters. • A methodology based on DoE and CFD is proposed for grout parameter determination. • A 3D CFD model has been developed to simulate a VGHE behavior. • Full-scale experiments in a single borehole have been conducted. • Model accuracy and method consistency have been validated with experimental results. • The proposed procedure reduces the calculation time in the identification process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have