Abstract
Based on aircraft measurements of aerosols and continental cumulus clouds made over the Loess Plateau of China (Xinzhou, Shanxi Province) on 30 July 2020, this study focuses on the vertical profiles of microphysical properties of aerosols and cumulus clouds, and use them to study aerosol-cloud interactions. During the study period, the boundary layer was stable with a height ∼1,500 m above sea level. Aerosols in the boundary layer mainly came from local emissions, while aerosols above this layer were mostly dust aerosols transported over long distances. Vertical profiles of aerosols and cloud condensation nuclei were obtained, and aerosol activation ratios at different supersaturation (SS) levels ranged from 0.16 to 0.32 at 0.2% SS and 0.70 to 0.85 at 0.8% SS. A thick cumulus cloud in the development stage was observed from the bottom to the top with the horizontal dimension of 10 km by 7 km, the cloud-base height of 2,450 m (15.8°C), and the cloud-top height of 5,400 m (−3°C). The maximum updraft velocity near the cloud top was 13.45 m s−1, and the maximum downdraft velocity occuring in the upper-middle part of the cloud was 4.44 ms−1. The temperature inside the cloud was higher than the outside, with their difference being positively correlated with the cloud water content. The temperature lapse rate inside the cloud was about −6.5°C km−1. The liquid water content and droplet effective radius (Re) increased with increasing height. The cloud droplet number concentration (Nc) increased first then decreased, peaking in the middle and lower part of the cloud, the average values of Nc and Re were 767.9 cm−3 and 5.17 μm, respectively. The cloud droplet spectrum had a multi-peak distribution, with the first appearing at ∼4.5 μm. SS in the cloud first increased then decreased with height. The maximum SS is ∼0.7% appearing at ∼3,800 m. The conversion rate of intra-cloud aerosols to cloud droplets was between 0.2 and 0.54, with the ratio increasing gradually with increasing height. The cloud droplet spectral dispersion and Nc were positively correlated. The aerosol indirect effect (AIE) was estimated to be 0.245 and 0.16, based on Nc and Re, respectively. The cloud droplet dispersion mainly attenuated the AIE, up to ∼34.7%.
Highlights
Clouds play significant roles on Earth’s energy budget (e.g., Ramanathan et al, 1989; Norris, 2005) and hydrological cycle (e.g., Lohmann and Feichter, 2005; Andreae and Rosenfeld, 2008), strongly affecting regional and global climate
This study is concerned with the analyses of aircraft measurements of aerosol properties and their impact on the growth of a continental cumulus cloud observed in Shanxi province in China
Aerosol particles above 4 km were mostly transported from deserts in northwest China and composed of submicron dust particles
Summary
Clouds play significant roles on Earth’s energy budget (e.g., Ramanathan et al, 1989; Norris, 2005) and hydrological cycle (e.g., Lohmann and Feichter, 2005; Andreae and Rosenfeld, 2008), strongly affecting regional and global climate. Meteorological data, including temperature, specific humidity, relative humidity, GPS track, among others Aerosol spectra and number concentration Cloud droplet size and number concentration Size and number concentrations of large cloud droplets or ice crystals Ultra-fine mode aerosol number concentration CCN number concentration in the transition from shallow cumulus clouds to convective clouds is controversial. Aircraft measurements of aerosol properties and shallow cumulus clouds in this specific region are desired to study the aerosol impact on convection. This study is concerned with the analyses of aircraft measurements of aerosol properties and their impact on the growth of a continental cumulus cloud observed in Shanxi province in China. The Model 3,772 Condensation Particle Counter (CPC, TSI, USA) is a compact, rugged, and full-featured instrument, detecting airborne particles down to 10 nm in diameter at an aerosol flow rate of 1.0 L min−1, over a concentration range of 0 to 104 particles cm−3. After flying at this level for 5 min, the aircraft climbed to 3,600 m and continued flying horizontally for another 5 min before turning back to the airport
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have