Abstract

Quantitative electron probe analysis was performed on chick epiphyseal growth cartilage prepared by two anhydrous methods, ultrathin cryosections and freeze-dried epoxy-embedded tissue. Levels of Na, Mg, P, S, Cl, K, and Ca were determined in cytoplasm, mitochondria, extracellular matrix, matrix vesicles, and mineral nodules in four zones of the cartilage--proliferative, prehypertrophic, early hypertrophic, and early calcification. The exceptionally high levels of Na and K (up to 550 and 200 mmol/kg wet wt, respectively) found in the matrix are believed to be largely bound to fixed anions. Within cells, Na was higher than K (140 versus 20-34 mmol/kg wet wt), a condition that may reflect hypoxia. Ca and P were low in cells and unmineralized matrix. Ca and P were high in mitochondrial granules of the early hypertrophic zone and diminished in amount in the calcifying zone; the converse occurred in matrix vesicles. Mg was low to undetectable except in heavily mineralized structures (i.e., mitochondrial granules, matrix vesicles, and mineral nodules). S levels were high in matrix (approximately 400 mmol/kg wet wt) and increased slightly with maturation. The amount of S present greatly exceeds Ca levels and implies that sulfate, the predominant form of sulfur in proteoglycans, may serve as an ion-exchange mechanism for the passage of Ca through the matrix to sites where Ca and phosphate are precipitated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call