Abstract

Pile foundation is one of the most commonly used foundations for offshore and coastal structures. This paper describes an innovative design for the pile foundation, which institutes an innovative strategy over traditional pile foundation to achieve higher axial bearing capacity. This is achieved by adding restriction plates inside the pile to help form the soil plug. A series of geotechnical centrifuge tests are carried out to evaluate the load bearing behaviors of traditional pile foundation and innovative pile foundation with different types of restriction plates. The pile diameter and shapes of the restriction plates on the soil plug behaviors and pile load carrying capacity are analyzed. The results show that the use of restriction plates could significantly increase the axial bearing capacity of large diameter pile foundations. For different pile diameters, the restriction plates with four smaller holes achieve better performance than those with one large hole of the same effective opening areas. A bearing capacity equation is obtained by normalizing the ultimate bearing capacity with the pile diameters for different restriction plates. This study demonstrates the promise of an innovative pile foundation with a restriction plate as an economic and technically feasible way to produce higher load-bearing capacity to support offshore and coastal structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call