Abstract

The within-flow vertical variation of anisotropy of the magnetic susceptibility (AMS) of three basaltic flow profiles from the Xitle volcano were investigated in relation to the lava flow-induced shear strain. Rock magnetic properties and opaque microscopy studies have shown that the magnetic mineralogy is dominated by Ti-poor magnetite with subtle vertical variations in grain size distribution: PSD grains dominate in a thin bottommost zone, and from base to top from PSD-MD to PSD-SD grains are found. The vertical variation of AMS principal direction patterns permitted identification of two to three main lava zones, some subdivided into subzones. The lower zone is very similar in all profiles with the magnetic foliation dipping toward the flow source, whereas the upper zone has magnetic foliation dipping toward the flow direction or alternates between dipping against and toward the flow direction. The K1 (maximum AMS axis) directions tend to be mostly parallel to the flow direction in both zones. The middle zone shows AMS axes diverging among profiles. We present heterogeneous strain ellipse distribution models for different flow velocities assuming similar viscosity to explain the AMS directions and related parameters of each zone. Irregular vertical foliations and transverse to flow lineation of a few samples at the bottommost and topmost part of profiles suggest SD inverse fabric, levels of intense friction, or degassing effects in AMS orientations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.