Abstract

We expand on the work of Hosoya to describe a generalization of continued fractions called "tree expressions." Each rooted tree will be shown to correspond to a unique tree expression which can be evaluated as a rational number (not necessarily in lowest terms) whose numerator is equal to the Hosoya index of the entire tree and whose denominator is equal to the tree with the root deleted. In the development, we use Z(G) to define a natural candidate ζ(G, v) for a "vertex topological index" which is a value applied to each vertex of a graph, rather than a value assigned to the graph overall. Finally, we generalize the notion of tree expression to "labeled tree expressions" that correspond to labeled trees and show that such expressions can be evaluated as quotients of determinants of matrices that resemble adjacency matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.