Abstract
The art gallery problem enquires about the least number of guards that are sufficient to ensure that an art gallery, represented by a polygon P, is fully guarded. In 1998, the problems of finding the minimum number of point guards, vertex guards, and edge guards required to guard P were shown to be APX-hard by Eidenbenz, Widmayer and Stamm. In 1987, Ghosh presented approximation algorithms for vertex guards and edge guards that achieved a ratio of \(\mathcal{O}(\log n)\), which was improved upto \(\mathcal{O}(\log\log OPT)\) by King and Kirkpatrick in 2011. It has been conjectured that constant-factor approximation algorithms exist for these problems. We settle the conjecture for the special class of polygons that are weakly visible from an edge and contain no holes by presenting a 6-approximation algorithm for finding the minimum number of vertex guards that runs in \(\mathcal{O}(n^2)\) time. On the other hand, for weak visibility polygons with holes, we present a reduction from the Set Cover problem to show that there cannot exist a polynomial time algorithm for the vertex guard problem with an approximation ratio better than \(((1−\epsilon)/12)\ln n\) for any e > 0, unless NP = P.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.