Abstract
The art gallery problem enquires about the least number of guards that are sufficient to ensure that an art gallery, represented by a polygon P, is fully guarded. In 1998, the problems of finding the minimum number of point guards, vertex guards, and edge guards required to guard P were shown to be APX-hard by Eidenbenz, Widmayer and Stamm. In 1987, Ghosh presented approximation algorithms for vertex guards and edge guards that achieved a ratio of O(logn), which was improved up to O(loglogOPT) by King and Kirkpatrick (2011). It has been conjectured that constant-factor approximation algorithms exist for these problems. We settle the conjecture for the special class of polygons that are weakly visible from an edge and contain no holes by presenting a 6-approximation algorithm for finding the minimum number of vertex guards that runs in O(n2) time. On the other hand, for weak visibility polygons with holes, we present a reduction from the Set Cover problem to show that there cannot exist a polynomial time algorithm for the vertex guard problem with an approximation ratio better than ((1−ϵ)/12)lnn for any ϵ>0, unless NP=P. We also show that, for the special class of polygons without holes that are orthogonal as well as weakly visible from an edge, the approximation ratio can be improved to 3. Finally, we consider the point guard problem and show that it is NP-hard in the case of polygons weakly visible from an edge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.