Abstract

Nowadays, nucleic acid therapy has become a promising way for the treatment of various malignant diseases. Cyclodextrin (CD)-based nucleic acid delivery systems have attracted widespread attention due to the favorable chemical structures and excellent biological properties of CD. Recently, a variety of CD-based nucleic acid delivery systems has been designed according to the different functions of CD for flexible gene therapies. In this review, the construction strategies and biomedical applications of CD-based nucleic acid delivery systems are mainly focused on. The review begins with an introduction to the synthesis and properties of simple CD-grafted polycations. Thereafter, CD-related supramolecular assemblies based on different guest components are discussed in detail. Finally, different CD-based organic/inorganic nanohybrids and their relevant functions are demonstrated. It is hoped that this brief review will motivate the delicate design of CD-based nucleic acid delivery systems for potential clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.