Abstract

Clinical application of nucleic acid-based therapies is limited by the lack of safe and efficient delivery systems. The purpose of this study is to design and evaluate novel biodegradable polymeric carriers sensitive to environmental changes for efficient delivery of nucleic acids, including plasmid DNA and siRNA. A novel polydisulfide with protonatable pendants was synthesized by the oxidative polymerization of a dithiol monomer, which was readily prepared by solid phase chemistry. The polydisulfide exhibited good buffering capacity and low cytotoxicity. It formed stable complexes with both plasmid DNA and siRNA. The particle sizes of the complexes decreased with the increase of the N/P ratios in the range of 100 to 750 nm. The complexes were stable in the presence of salt and heparin under normal physiological conditions, but dissociated to release nucleic acids in a reductive environment similar to cytoplasm. The polydisulfide demonstrated N/P ratio dependent transfection efficiency for plasmid DNA and gene silencing efficiency for siRNA. The presence of an endosomal disrupting agent, chloroquine, did not affect the DNA transfection efficiency of the polydisulfide. The transfection or gene silencing efficiency of the polydisulfide/DNA or siRNA complexes was comparable to or slightly lower than that of corresponding PEI complexes. Moreover, the polydisulfide showed better serum-friendly feature than PEI when delivering either DNA or siRNA in the presence of 10% FBS. This novel polydisulfide is a promising lead for further design and development of safe and efficient delivery systems for nucleic acids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call