Abstract
Photothermal therapy (PTT) is a prospective therapeutic method for breast cancer. However, excess inflammatory response induced by PTT may aggravate tumor metastasis. Meanwhile, the overexpressed heat shock proteins (HSPs) by cancer cells can protect them from hyperthermia during PTT. Therefore, to attenuate the PTT-induced inflammation and inhibit tumor metastasis, a folate receptor-targeted thermo-sensitive liposome (BI-FA-LP) co-loading Berberine (BBR) and Indocyanine green (ICG) was developed. BI-FA-LP utilized enhanced permeability and retention (EPR) effect and FA receptor-mediated endocytosis to selectively accumulate at tumor, reducing off-target toxicity during the treatment. After targeting to the tumor site, BBR and ICG were released from BI-FA-LP upon laser irradiation, and ICG showed good photothermal performance, while BBR inhibited HSP70 and HSP90 expression during PTT, exerting chemo-photothermal synergetic anti-tumor effect. Moreover, BBR could suppress the PTT induced inflammation, thus inhibiting tumor metastasis and ameliorating tissue injury. Thus, this versatile liposome provided a new strategy to enhance PTT and anti-inflammatory effects for breast cancer treatment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have