Abstract

A robust, filter-based portable fluorometer was designed, prototyped, and tested for time-resolved luminescence (TRL) analysis. Its flexible optical design allows interchangeable configurations to support three measurement modes: liquid-phase TRL using a sample cuvette, solid-matrix TRL using a sorbent strip, and evanescent-field TRL using a quartz-rod waveguide. A xenon flashlamp is used as the light source and a photomultiplier tube (PMT) as the photodetector. A gating technique was implemented to overcome PMT saturation by the intense xenon lamp flash, therefore higher gains can be set to measure weak luminescence signals. The TRL signal is digitized at a 4μs time resolution and a 12bit amplitude resolution. Individual flashes were monitored by a photodiode and its current was integrated to compensate for source light fluctuation. Using tetracycline as a model analyte, a 0.025ppb limit of detection (LOD) with a typical 2% relative standard deviation, and a 3 orders of magnitude (0.5–300ppb) linear dynamic range (r2=0.9996) were achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.