Abstract

White light with excellent color rendering property has been highly required for comfortable and healthy illumination. A facile strategy to achieve high color rendering index (Ra >90) in practical applications is using near ultraviolet chips as excitation sources combined with RGB phosphors. However, achieving high color rendering with both blue chips and near-ultraviolet (NUV) chips for commercial phosphors dispersed in phosphor-in-glass (PiGs) materials is still a big challenge. In this work, the PiG based on the ultra-low melting point Sn–F–P–O glass with commercial green (Lu3Al5O12:Ce3+) and red (SrxCa1-xAlSiN3:Eu2+) phosphors has been successfully fabricated by one-step sintering method. The phase identification and distribution of monochromatic red phosphor in glass (R-PiG) and green phosphor in glass (G-PiG) were investigated in detail. The Sn2+ ions in Sn–F–P–O matrix show the intense blue emission bands centered at 420 nm under the excitation of NUV chips (365 nm). Notably, the polychromatic red/green phosphor in glasses (R/G-PiGs) are versatile and exhibited excellent color rendering (Ra = 93, Ra = 95, Ra = 92, respectively) properties excited by both blue chips, NUV chips and laser diodes (WLD). The working temperature of R/G-PiGs is stable at ∼33 °C and ∼55 °C when employed in WLEDs/WLDs (1 W), which greatly prevented the phenomenon of “thermal quenching” for the phosphors caused by high temperature. Thus, the versatile R/G-PiG with ultra-high color rendering and excellent thermal properties indicates its promising application in high-power white LEDs/LDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call