Abstract

AbstractLuminophores' dual emission (DE) properties hold great potential for realizing single‐component white organic light–emitting diodes (WOLEDs). This study illustrates that the unique and vibrant DE phenomena with different luminous mechanisms can be formed through simple modulation of molecular structures. Four target luminophores, namely 2‐TPE‐PPI, 2‐TPE‐PI, 2‐TPE‐An‐PPI, and 2‐TPE‐An‐PI, capable of DE under different conditions, are intentionally designed and successfully synthesized. Owing to the inherent flexibility of the minor molecular backbone and minor steric hindrance, 2‐TPE‐PPI and 2‐TPE‐PI exhibit DE spectra in dilute solutions with different solvent polarities. The intrinsic cause of the DE phenomenon in 2‐TPE‐An‐PPI and 2‐TPE‐An‐PI arises from the localized distribution of frontier molecular orbits resulting from the presence of an anthracene unit and the formation of an exciter group through intermolecular interactions involving anthracene. Remarkably, single‐emissive‐layer WOLEDs based on 2‐TPE‐An‐PPI and 2‐TPE‐An‐PI demonstrate stable white emission with CIE coordinates at (0.33, 0.39) and (0.30, 0.39), respectively, closely approaching the CIE coordinates of standard white light. Moreover, they maintain stable EL spectra from 4 to 10 V, an exceptional attribute rarely observed in many white light devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.