Abstract

AbstractExtracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have emerged as an appealing alternative to cell therapy in regenerative medicine. Unlike bone marrow MSCs (BMSCs) cultured in vitro with normoxia, bone marrow in vivo is exposed to a hypoxic environment. To date, it remains unclear whether hypoxia preconditioning can improve the function of BMSC‐derived EVs and be more conducive to bone repair. Herein, it is found that hypoxia preconditioned BMSCs secrete more biglycan (Bgn)‐rich EVs via proteomics analysis, and these hypoxic EVs (Hypo‐EVs) significantly promote osteoblast proliferation, migration, differentiation, and mineralization by activating the phosphatidylinositide 3‐kinase/protein kinase B pathway. Subsequently, an injectable bioactive hydrogel composed of poly(ethylene glycol)/polypeptide copolymers is developed to improve the stability and retention of Hypo‐EVs in vivo. The Hypo‐EVs‐laden hydrogel shows continuous liberation of Hypo‐EVs for 3 weeks and substantially accelerates bone regeneration in 5‐mm rat cranial defects. Finally, it is confirmed that Bgn in EVs is a pivotal protein regulating osteoblast differentiation and mineralization and exerts its effects through paracrine mechanisms. Therefore, this study shows that hypoxia stimulation is an effective approach to optimize the therapeutic effects of BMSC‐derived EVs and that injectable hydrogel‐based EVs delivery is a promising strategy for tissue regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.