Abstract
Accurate production estimates, months before the harvest, are crucial for all parts of the food supply chain, from farmers to governments. While methods have been developed to use satellite data to monitor crop development and production, they typically rely on official crop statistics or ground-based data, limiting their application to the regions where they were calibrated. To address this issue, a new method called VeRsatile Crop Yield Estimator (VeRCYe) has been developed to estimate wheat yield at the pixel and field levels using satellite data and process-based crop models. The method uses the Leaf Area Index (LAI) as the linking variable between remotely sensed data and APSIM crop model simulations. In this process, the sowing dates of each field were detected (RMSE = 2.6 days) using PlanetScope imagery, with PlanetScope and Sentinel-2 data fused into a daily 3 m LAI dataset, enabling VeRCYe to overcome the traditional trade-off between satellite data that has either high temporal or high spatial resolution. The method was evaluated using 27 wheat fields across the Australian wheatbelt, covering a wide range of pedo-climatic conditions and farm management practices across three growing seasons. VeRCYe accurately estimated field-scale yield (R2 = 0.88, RMSE = 757 kg/ha) and produced 3 m pixel size yield maps (R2 = 0.32, RMSE = 1213 kg/ha). The method can potentially forecast the final yield (R2 = 0.78–0.88) about 2 months before the harvest. Finally, the harvest dates of each field were detected from space (RMSE = 2.7 days), indicating when and where the estimated yield would be available to be traded in the market. VeRCYe can estimate yield without ground calibration, be applied to other crop types, and used with any remotely sensed LAI information. This model provides insights into yield variability from pixel to regional scales, enriching our understanding of agricultural productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.