Abstract

In this investigation the heavy metals (Cu, Zn, Mn, Cr and Ni) remediation potential of Eisenia fetida was studied in the crude oil polluted soil. The potential of E. fetida was evaluated based on the decrease in concentrations of Cu, Zn, Mn, Cr and Ni, and improvement in the soil enzyme activities at the end of 90 days of experimental trials. Moreover, soil health quality, inter-relationship between the enzyme activities and the growth parameters of E. fetida and synergistic relation among the enzyme activities were also evaluated through G-Mean and T-QSI indices, chord plot analysis and principal component analysis (PCA) to confirm the performance of E. fetida during vermiremediation. The results revealed that the soil treated with E. fetida showed a reduction in the concentration of Cu, Zn, Mn, Cr and Ni by 17.4% 19.45%, 9.44%, 23.8% and 9.6% respectively by end of the experimental trials. The cellulase, amylase, polyphenol oxidase, peroxidase, urease, dehydrogenase and catalase activities in the E. fetida-treated soil were enhanced by 89.83%, 99.17%, 142%, 109.9%, 92.9%, 694.3% and 274.5% respectively. The results of SEM-EDS revealed enhancement in the O, K, Na, Mg and P content by 62.36%, 96.2%, 97.9%, 93.7% and 98.2% respectively by the end of the experimental trial. The G-Mean and T-QSI indices also confirmed the improvement in soil enzyme activities thereby indicating the positive influence of E. fetida on soil decontamination process. The chord plot indicated the interrelationship between the earthworm's growth parameters and enzyme activities of the soil as indicated by the high linkage between the nodes. Finally, the PCA confirmed the negative effect of the heavy metals on the soil enzyme activities and synergistic interrelationship between the enzyme activities during the vermiremediation process. Thus, this study demonstrated the changes in the soil enzyme activities and their interconnected influences during vermiremediation of crude oil sourced heavy metals from polluted soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call