Abstract
Static value analysis is a classical approach for verifying programs with floating-point computations. Value analysis mainly relies on abstract interpretation and over-approximates the possible values of program variables. State-of-the-art tools may however compute over-approximations that can be rather coarse for some very usual program expressions. In this paper, we show that constraint solvers can significantly refine approximations computed with abstract interpretation tools. More precisely, we introduce a hybrid approach combining abstract interpretation and constraint programming techniques in a single static and automatic analysis. This hybrid approach benefits from the strong points of abstract interpretation and constraint programming techniques, and thus, it is more effective than static analysers and constraint solvers, when used separately. We compared the efficiency of the system we developed—named rAiCp—with state-of-the-art static analyzers: rAiCp produces substantially more precise approximations and is able to check program properties on both academic and industrial benchmarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.