Abstract

Pressure sensors are the key elements for industrial monitoring and control systems to lower equipment maintenance cost, improve fuel economy, reduce atmospheric pollution, and provide a safer workplace. However, the testing environment is usually harsh. For example, inside the turbine engine, temperatures might exceed 600°C and pressures might exceed 100psi (690kPa), where most current available sensors cannot survive. Moreover, due to the restricted space for installation, miniature size of the sensor is highly desirable. To meet these requirements, a novel type of all fused silica optic fiber tip pressure sensor with a 125μm diameter was developed. It is a diaphragm based pressure sensor in which a Fabry-Perot interferometer is constructed by the end face of an optical fiber and the surface of a diaphragm connected by a short piece of hollow fiber. The FP cavity length and the interference pattern will change according to ambient pressure variation. Its main improvement with respect to previously developed optical sensors, such as those utilizing techniques of wet etching, anodic bonding and sol-gel bonding, is the fact that no chemical method is needed during the cavity fabrication. Its dynamic pressure performance was verified in a turbine engine field test, demonstrating not only that it can safely and reliably function near the fan of a turbine engine for more than two hours, but also that its performance is consistent with that of a commercial Kulite sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call