Abstract

A ‘model’ material of recycled polypropylene (PP) was prepared through the injection molding process, and the effect of processing history on the polymer characteristics was investigated through the high-speed melt spinning of virgin and recycled PP. On-line measurement of the thinning behavior of the spin-line revealed the downstream shift of solidification point for the recycled PP at the take-up velocity of 1.0 km/min, indicating the suppression of flow-induced crystallization. The difference was not clear at higher take-up velocities of up to 5 km/min. For any identical take-up velocity, no clear difference in the stress-strain curves and birefringence of the fibers from virgin and recycled PP could be observed, whereas the detailed investigation on the variation of relative amount of c-axis and a*-axis oriented crystals in the fibers prepared at varied take-up velocities suggested the deterioration of flow-induced crystallization at 1.0 km/min. It was speculated that the processing history induced the lowering of the entanglement density, which affected the melt spinning and crystallization behavior. An undistinguishable difference between the virgin and recycled PP at increased take-up velocities suggested the existence of an optimum elongational strain rate for the detection of the different states of molecular entanglement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call