Abstract

An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas (OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China’s seas has been updated to (1/24)° from the global model with (1/2)° resolution. Besides, daily remote sensing sea surface temperature (SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth (MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores (SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value (more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call