Abstract

Satellite remote sensing sea surface temperature (SST) data are lost due to cloud cover. Missing data often cause inconvenience in subsequent applications and thus need to be reconstructed. In this study, the Data Interpolating Empirical Orthogonal Function (DINEOF) method was used to reconstruct the hourly SST data missing from the Himawari-8 satellite in the waters near Taiwan. The SST characteristics in the waters around Taiwan are quite complex, with high SST at Kuroshio in the east of Taiwan and great variation in the SST west of Taiwan due to the influence of tides. Therefore, the analysis with DINEOF was conducted using 25-h data to match the tidal cycle. The influence of SST characteristics on the accuracy of SST reconstruction is also discussed. The results show that in the western sea area where the variation of SST is large, the average root-mean-square error of SST between the original SST and the reconstructed SST is the lowest and the average coefficient of determination is the highest. The accuracy of the reconstructed SST is positively correlated with the SST variation. Furthermore, the statistical results also show that the DINEOF method can effectively reconstruct the SST regardless of the missing data rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call