Abstract

The use of dynamic movements on linear accelerators during irradiation has found a revised interest lately due to the integration of computers to control the accelerator. In this paper, dynamic wedge fields that are produced by moving one of the collimator blocks during irradiation are studied. Since these wedge fields differ from those of mechanical wedges, certain requirements are to be met on the treatment planning system. A pencil-beam-based treatment planning system that uses the resultant energy fluence distribution from the dynamic collimator movement has been extensively reviewed. In calculations, the system treats the dynamic collimated field as a single, modulated field that yields calculation times close to those for open beams. Details are given on the theoretical model used for the calculation of dynamically generated dose distributions. Measurements of depth doses, profiles, and output factors in dynamic wedge fields indicate that calculations accurately predict the outcome from dynamic wedges without any additional measurements other than those used for characterization of static open beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.