Abstract

Nonpenetrating chest wall impact (commotio cordis) may lead to sudden cardiac death due to the acute initiation of ventricular fibrillation (VF). VF may result from sudden stretch during a vulnerable window, which is determined by repolarization inhomogeneity. We examined action potential morphologies and VF inducibility in response to sudden myocardial stretch in the left ventricle (LV). In six Langendorff perfused rabbit hearts, the LV was instrumented with a fluid-filled balloon. Increasing volume and pressure pulses were applied at different times of the cardiac cycle. Monophasic action potentials (MAPs) were recorded simultaneously from five LV epicardial sites. Inter-site dispersion of repolarization was calculated in the time and voltage domains. Sudden balloon inflation induced VF when pressure pulses of 208-289 mmHg were applied within a window of 35-88 msec after MAP upstroke, a period of intrinsic increase in repolarization dispersion. During the pressure pulse, MAPs revealed an additional increase in repolarization dispersion (time domain) by 9 +/- 6 msec (P < 0.01). The maximal difference in repolarization levels (voltage domain) between sites increased from 19 +/- 3% to 26 +/- 3% (P < 0.05). Earliest stretch-induced activation was observed near a site with early repolarization, while sites with late repolarization showed delayed activation. Sudden myocardial stretch can elicit VF when it occurs during a vulnerable window that is based on repolarization inhomogeneity. Stretch pulses applied during this vulnerable window can lead to nonuniform activation. Repolarization dispersion might play a crucial role in the occurrence of fatal tachyarrhythmias during commotio cordis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.