Abstract

A novel, noninvasive magnetic resonance imaging-based method for measuring changes in venous cerebral blood volume (CBV(v)) is presented. Venous refocusing for volume estimation (VERVE) exploits the dependency of the spin-spin relaxation rate of deoxygenated blood on the refocusing interval. Interleaved CPMG EPI acquisitions following a train of either tightly or sparsely spaced hard refocusing pulses (every 3.7 or 30 msec, respectively) at matched echo time were used to isolate the blood signal while minimizing the intravascular blood oxygenation level dependent (BOLD) signal contribution. The technique was employed to determine the steady-state increase in the CBV(v) in the visual cortex (VC) in seven healthy adult volunteers during flickering checkerboard photic stimulation. A functional activation model and a set of previously collected in vitro human whole blood relaxometry data were used to evaluate the intravascular BOLD effect on the VERVE signal. The average VC venous blood volume change was estimated to be 16 +/- 2%. This method has the potential to provide efficient and continuous monitoring of venous cerebral blood volume, thereby enabling further exploration of the mechanism underlying BOLD signal changes upon physiologic, pathophysiologic, and pharmacologic perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.