Abstract
Abstract Momentum and thermal transport through open-celled metallic foams filled in a channel of small height is studied in the present technical brief. Fully developed momentum and thermal layers via the Brinkman–Darcy model enable us to obtain closed-form solutions regarding the fluid velocity and temperature distributions of metal and fluid, all depending upon a factor related to the wall slip velocity. A comparative study on the pertinent physical parameters helps us conclude that the wall slip cools the porous channel, enhancing the rate of heat transfer. In addition to this, increasing pore density leads to an effective reduction in the entropy generation number, followed by further reduction with the nonzero slip velocity, except the near-wall regions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.