Abstract

Velocity and passive-scalar spectra for turbulent fields generated by a forced three-dimensional simulation with 1283 grid points and Taylor-microscale Reynolds numbers up to 83 are shown to have convective and diffusive spectral regimes. One-and three-dimensional spectra are compared with experiment and theory. If normalized by the Kolmogorov dissipation scales and scalar dissipation, velocity spectra and scalar spectra for given Prandtl numbers collapse to single curves in the dissipation regime with exponential tails. If multiplied by k⅗ the velocity spectra show an anomalously high Kolmogorov constant that is consistent with low Reynolds number experiments. When normalized by the Batchelor scales, the scalar spectra show a universal dissipation regime that is independent of Prandtl numbers from 0.1 to 1.0. The time development of velocity spectra is illustrated by energy-transfer spectra in which distinct pulses propagate to high wavenumbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call