Abstract
Using many-body diagrammatic perturbation theory we consider carrier density- and substrate-dependent many-body renormalization of doped or gated graphene induced by Coulombic electron-electron interaction effects. We quantitatively calculate the many-body spectral function, the renormalized quasiparticle energy dispersion, and the renormalized graphene velocity using the leading-order self-energy in the dynamically screened Coulomb interaction within the ring diagram approximation. We predict experimentally detectable many-body signatures, which are enhanced as the carrier density and the substrate dielectric constant are reduced, finding an intriguing instability in the graphene excitation spectrum at low wave vectors where interaction completely destroys all particlelike features of the noninteracting linear dispersion. We also make experimentally relevant quantitative predictions about the carrier density and wave-vector dependence of graphene velocity renormalization induced by electron-electron interaction. We compare on-shell and off-shell self-energy approximations within the ring diagram approximation, finding a substantial quantitative difference between their predicted velocity renormalization corrections in spite of the generally weak-coupling nature of interaction in graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.