Abstract

We present results of detailed velocity profile measurements in a large series of granular flow experiments in a dam-break setup. The inclination angle, bead size, and roughness of the running surface were varied. In all experiments, the downstream velocity profiles changed continuously from the head to the tail of the avalanches. On rough running surfaces, an inflection point developed in the velocity profiles. These velocity profiles cannot be modeled by the large class of constitutive laws which relate the shear stress to a power law of the strain rate. The velocity profile shape factor increased from the head to the tail of the avalanches. Its maximum value grew with increasing roughness of the running surface. We conclude that flow features such as velocity profiles are strongly influenced by the boundary condition at the running surface, which depends on the ratio of bead size to the typical roughness length of the surface. Furthermore, we show that varying velocity profile shape factors inside gravitationally driven finite-mass flows give rise to an additional term in the depth-averaged momentum equation, which is normally solved in the simulation software of hazardous geophysical flows. We therefore encourage time dependent velocity profile measurements inside hazardous geophysical flows, to learn about the importance of this “new” term in the mathematical modeling of these flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.