Abstract
To solve the problem of thrust vector misalignment from the Cubesat center of mass during orbital maneuver, spin-stabilized method is applied to eliminate velocity pointing error. Spinning thrusting Cubesat model involves the effects of mass variation and jet damping is established. Analytical solutions for the angular velocity, nutation angle, Euler angle, and inertial velocity with nonzero initial conditions are derived. Simulations show that the analytical solutions closely match numerical simulations. Based on the analytical solutions, the velocity pointing error influencing factors is analyzed. The results show that the velocity pointing error caused by initial transverse velocity, nutation angle and transverse disturbance torque can be reduced by raising the spin rate, but the initial Euler angle need to be limited. Also, the spinning thrusting maneuver can allow for a lower spin rate by increasing the axial moment of inertia.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have