Abstract
Unmanned underwater vehicles require bottom-referenced acoustic navigation aids to maintain long-term positional accuracy without surfacing. When these platforms are small, they create new design constraints for acoustic navigation aids because of the limited available space and power. Traditional acoustic navigation techniques, such as Doppler Velocity Logs, are unsuitable for use on small platforms because of the power required to maintain adequate signal to noise ratio when they are scaled in size. A compact correlation velocity log (CVL) is an alternative approach that can meet the power, space, and accuracy requirements for an acoustic navigation aid on such platforms. This device uses a single projector, a sparse receive array, and estimates platform motion using a multi-dimensional fitting algorithm over an ensemble of 3 or more pings. This presentation will discuss the theory of operation, simulation, and experimental results for a 300 kHz compact CVL that is 4 × 8 cm2. [The authors want to acknowledge Lockheed Martin Rotary and Mission Systems for their financial support of this work.]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.