Abstract

We analyze the response of an Unruh-DeWitt detector moving along an unbounded spatial trajectory in a two-dimensional spatial plane with constant independent magnitudes of both the four-acceleration and of a timelike proper time derivative of the four-accelration. In a Fermi-Walker frame moving with the detector, the direction of the acceleration rotates at a constant rate around a great circle. This is the motion of a charge in a uniform electric field when in the frame of the charge there is both an electric and a magnetic field. We compare the response of this detector to a detector moving with constant velocity in a thermal bath of the corresponding temperature for non-relativistic velocities and two regimes: ultraviolet and infrared. In the infrared regime, the detector in the Minkowski space-time moving along the spatially two-dimensional trajectory should move with a higher speed to keep up with the same excitation rate of the inertial detector in a thermal bath. In the ultraviolet regime, the dominant modification in the response of this detector compared with the blackbody spectrum of Unruh radiation is the same as the dominant modification perceived by a detector moving with constant velocity in a thermal bath.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call