Abstract

Microstructural effects become important, when dimensions of the heterogeneous material are comparable to the length scale of microstructure and the state of stress needs to be defined in a non-local manner. Linear theory of elasticity, which is associated with the concept of homogeneity of material and local stresses, cannot describe the behavior of the materials with microstructures. In this study, Couple stress theory of elasticity has been employed to capture the size effects on the propagation of Lamb waves in an elastic plate with microstructure. Effects on the dispersion curves of Lamb waves are studied, when the characteristic length of the material is comparable to cell size. The governing equations of couple stress theory, involving stresses and couple stresses are solved to study the impact of different characteristic lengths, comparable with cell size. Since bone is a material with microstructure, so for numerical calculations and graphical representation of the results, the plate is considered to have mechanical properties typically used for bones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call