Abstract

ABSTRACTDissipation spectra of velocity and reactive scalars—temperature and fuel mass fraction—in turbulent premixed flames are studied using direct numerical simulation data of a temporally evolving lean hydrogen-air premixed planar jet (PTJ) flame and a statistically stationary planar lean methane-air (SP) flame. The equivalence ratio in both cases was 0.7, the pressure 1 atm while the unburned temperature was 700 K for the hydrogen-air PTJ case and 300 K for methane-air SP case, resulting in data sets with a density ratio of 3 and 5, respectively. The turbulent Reynolds numbers for the cases ranged from 200 to 428.4, the Damköhler number from 3.1 to 29.1, and the Karlovitz number from 0.1 to 4.5. The dissipation spectra collapse when normalized by the respective Favre-averaged dissipation rates. However, the normalized dissipation spectra in all the cases deviate noticeably from those predicted by classical scaling laws for constant-density turbulent flows and bear a clear influence of the chemical reactions on the dissipative range of the energy cascade.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.